Research highlights and key publications

Trends in global fire occurrence and fire modelling

Global burned area by wildfires is declining, which mainly originates from Northern Africa. However, the satellite records of ~20 years are still too short and inaccurate to state if this decline in global fire occurrence is robust. Also for the future, we cannot robustely predict how fire occurrence will change. Although climate warming and drying will cause more fire-prone weather conditions, actual fire occurrence also depends on human activities and vegetation conditions. Current global fire models cannot well represent these effects on fire (Figure).

Forkel, M., Dorigo, W.A., Lasslop, G., Chuvieco, E., Hantson, S., Heil, A., Teubner, I., Thonicke, K., Harrison, S.P. (2019). Recent global and regional trends in burned area and their compensating environmental controls. Environmental Research Communications. https://doi.org/10.1088/2515-7620/ab25d2

Forkel, M., Andela, N., Harrison, S.P., Lasslop, G., Marle, M. van, Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., Arneth, A. (2019). Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76. https://doi.org/10.5194/bg-16-57-2019

Integrating satellite observations with global vegetation models

We integrated satellite observations of vegetation greenness, sun-induced fluorescence, biomass, land cover and fire with a dynamic global vegetation model. This helped to reduce model errors and to better simulate spatial patterns of biomass, tree cover and photosynthesis (Figure).

Forkel, M., Drüke, M., Thurner, M., Dorigo, W., Schaphoff, S., Thonicke, K., Bloh, W. von, Carvalhais, N. (2019).
Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations.
Scientific Reports 9, 1–12. https://doi.org/10.1038/s41598-019-55187-7

Warmer springs lead to reduced plant growth in summer and autumn

"Earlier, warmer springs — a consequence of climate change — have lengthened the northern growing season and have increased plant productivity earlier in the year. However, there is some evidence that there may be both beneficial and adverse lagged effects on plant growth later in the year. (We analysed) satellite measurements of vegetation greenness, and report regional differences in beneficial and adverse lagged effects on plant growth across the Northern Hemisphere. (...) The accumulation of seasonal water deficits may result in regional adverse lagged effects in plant growth in response to warmer springs" (Nature 562)

Buermann, W., Forkel, M., O’Sullivan, M., Sitch, S., Friedlingstein, P., Haverd, V., Jain, A.K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D., Nabel, J.E.M.S., Tian, H., Wiltshire, A.J., Zhu, D., Smith, W.K., Richardson, A.D. (2018). Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114. https://doi.org/10.1038/s41586-018-0555-7

Warming making bigger CO2 swings

"The combined effects of climate change and vegetation dynamics at high northern latitudes have amplified the seasonal variation of atmospheric CO2 concentrations over the past half century. Forkel et al. combined observations and models to show that climate warming has caused the photosynthetic uptake of carbon to increase faster than its respiratory release from the terrestrial biosphere. This has increased the difference from summer to winter, as well as the latitudinal gradient. Because of the physiological limitations to carbon uptake by terrestrial vegetation, this negative feedback to warming in the boreal north and Arctic cannot continue indefinitely." (Science 351, 6274, p. 696). The paper was also featured at climate central.

Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle, S., Reichstein, M. (2016). Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science, doi:10.1126/science.aac4971.

Publicatons

Publication are ordered chronological: 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2012-2013

2023

(47) Schmidt, L., Forkel, M., Zotta, R.-M., Scherrer, S., Dorigo, W. A., Kuhn-Régnier, A., van der Schalie, R., and Yebra, M. (2022).
Assessing the sensitivity of multi-frequency passive microwave vegetation optical depth to vegetation properties
Biogeosciences 20, 1027–1046, https://doi.org/10.5194/bg-20-1027-2023

(46) Forkel, M., Schmidt, L., Zotta, R.-M., Dorigo, W., and Yebra, M. (2023).
Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth
Hydrology and Earth System Sciences, 27, 39–68, https://doi.org/10.5194/hess-27-39-2023

2022

(45) Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein, M., Yang, H., Duveiller, G., Weber, U., and Orth, R. (2022).
Widespread increasing vegetation sensitivity to soil moisture.
Nature Communications, 13, 3959, https://doi.org/10.1038/s41467-022-31667-9

(44) Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., and Le Quéré, C. (2022).
Global and Regional Trends and Drivers of Fire Under Climate Change.
Reviews of Geophysics, 60, e2020RG000726, https://doi.org/10.1029/2020RG000726

(43) Kosczor, E., Forkel, M., Hernández, J., Kinalczyk, D., Pirotti, F., and Kutchartt, E. (2022).
Assessing land surface phenology in Araucaria-Nothofagus forests in Chile with Landsat 8/Sentinel-2 time series.
International Journal of Applied Earth Observation and Geoinformation, 112, 102862, https://doi.org/10.1016/j.jag.2022.102862

(42) Wild, B., Teubner, I., Moesinger, L., Zotta, R.-M., Forkel, M., van der Schalie, R., Sitch, S., and Dorigo, W. (2022).
VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing.
Earth System Science Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022

2021

(41) Zhang, W., Wei, F., Horion, S., Fensholt, R., Forkel, M., and Brandt, M. (2021).
Global quantification of the bidirectional dependency between soil moisture and vegetation productivity.
Agricultural and Forest Meteorology, 108735, https://doi.org/10.1016/j.agrformet.2021.108735

(40) Harrison, S. P., Prentice, I. C., Bloomfield, K. J., Dong, N., Forkel, M., Forrest, M., Ningthoujam, R. K., Pellegrini, A., Shen, Y., Baudena, M., Cardoso, A. W., Huss, J. C., Joshi, J., Oliveras, I., Pausas, J. G., and Simpson, K. J. (2021).
Understanding and modelling wildfire regimes: an ecological perspective.
Environmental Research Letters, https://doi.org/10.1088/1748-9326/ac39be

(39) Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J., Baldocchi, D. D., Perez-Priego, O., Christiansen, R., Peters, J., Anderson, K., Bahn, M., Black, T. A., Blanken, P. D., Bonal, D., Buchmann, N., Caldararu, S., Carrara, A., Carvalhais, N., Cescatti, A., Chen, J., Cleverly, J., Cremonese, E., Desai, A. R., El-Madany, T. S., Farella, M. M., Fernández-Martínez, M., Filippa, G., Forkel, M., Galvagno, M., Gomarasca, U., Gough, C. M., Göckede, M., Ibrom, A., Ikawa, H., Janssens, I. A., Jung, M., Kattge, J., Keenan, T. F., Knohl, A., Kobayashi, H., Kraemer, G., Law, B. E., Liddell, M. J., Ma, X., Mammarella, I., Martini, D., Macfarlane, C., Matteucci, G., Montagnani, L., Pabon-Moreno, D. E., Panigada, C., Papale, D., Pendall, E., Penuelas, J., Phillips, R. P., Reich, P. B., Rossini, M., Rotenberg, E., Scott, R. L., Stahl, C., Weber, U., Wohlfahrt, G., Wolf, S., Wright, I. J., Yakir, D., Zaehle, S., and Reichstein, M. (2021).
The three major axes of terrestrial ecosystem function.
Nature, 1–5, https://doi.org/10.1038/s41586-021-03939-9

(38) Drüke, M., von Bloh, W., Petri, S., Sakschewski, B., Schaphoff, S., Forkel, M., Huiskamp, W., Feulner, G., and Thonicke, K. (2021).
CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model.
Geoscientific Model Development, 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021

(37) Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I. C. and Harrison, S. P. (2021).
The importance of antecedent vegetation and drought conditions as global drivers of burnt area.
Biogeosciences 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021

(36) Li, W., Migliavacca, M., Forkel, M., Walther, S., Reichstein, M., and Orth, R. (2021).
Revisiting Global Vegetation Controls Using Multi-Layer Soil Moisture.
Geophysical Research Letters 48, e2021GL092856, https://doi.org/10.1029/2021GL092856

(35) Teubner, I. E., Forkel, M., Wild, B., Mösinger, L. and Dorigo, W. A. (2021).
Impact of temperature and water availability on microwave-derived gross primary production.
Biogeosciences 18, 3285–3308. https://doi.org/10.5194/bg-18-3285-2021

(34) Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., and Turco, M. (2021).
Human and climate drivers of global biomass burning variability.
Science of The Total Environment, 146361, https://doi.org/10.1016/j.scitotenv.2021.146361

2020

(33) Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salentinig, A., Trnka, M., Anderson, M., Ng, W.-T., Kokalj, Ž., Bucur, A. and Dorigo, W. (2020).
Earth Observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe): current state and future directions.
Regional Environmental Change, 20(4), 123. https://doi.org/10.1007/s10113-020-01710-w

(32) Pfeil, I., Wagner, W., Forkel, M., Dorigo, W., Vreugdenhil, M. (2020).
Does ASCAT observe the spring reactivation in temperate deciduous broadleaf forests?
Remote Sensing of Environment 250, 112042. https://doi.org/10.1016/j.rse.2020.112042

(31) Lasslop, G., Hantson, S., Harrison, S.P., Bachelet, D., Burton, C., Forkel, M., Forrest, M., Li, F., Melton, J.R., Yue, C., Archibald, S., Scheiter, S., Arneth, A., Hickler, T., Sitch, S. (2020).
Global ecosystems and fire: multi-model assessment of fire-induced tree cover and carbon storage reduction.
Global Change Biology https://doi.org/10.1111/gcb.15160

(30) Moesinger, L., Dorigo, W., Jeu, R. de, Schalie, R. van der, Scanlon, T., Teubner, I., Forkel, M. (2020).
The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA).
Earth System Science Data 12, 177–196. https://doi.org/10.5194/essd-12-177-2020

2019

(29) Forkel, M., Drüke, M., Thurner, M., Dorigo, W., Schaphoff, S., Thonicke, K., Bloh, W. von, Carvalhais, N. (2019).
Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations.
Scientific Reports 9, 1–12. https://doi.org/10.1038/s41598-019-55187-7

(28) Drüke, M., Forkel, M., Bloh, W. von, Sakschewski, B., Cardoso, M., Bustamante, M., Kurths, J., Thonicke, K. (2019).
Improving the LPJmL4-SPITFIRE vegetation-fire model for South America using satellite data.
Geoscientific Model Development 12, 5029–5054. https://doi.org/10.5194/gmd-12-5029-2019

(27) Zappa, L., Forkel, M., Xaver, A., Dorigo, W. (2019).
Deriving Field Scale Soil Moisture from Satellite Observations and Ground Measurements in a Hilly Agricultural Region.
Remote Sensing 11, 2596. https://doi.org/10.3390/rs11222596

(26) Forkel, M., Dorigo, W.A., Lasslop, G., Chuvieco, E., Hantson, S., Heil, A., Teubner, I., Thonicke, K., Harrison, S.P. (2019).
Recent global and regional trends in burned area and their compensating environmental controls.
Environmental Research Communications. https://doi.org/10.1088/2515-7620/ab25d2

(25) Teubner, I.E., Forkel, M., Camps-Valls, G., Jung, M., Miralles, D.G., Tramontana, G., van der Schalie, R., Vreugdenhil, M., Mösinger, L., Dorigo, W.A. (2019).
A carbon sink-driven approach to estimate gross primary production from microwave satellite observations.
Remote Sensing of Environment 229, 100–113. https://doi.org/10.1016/j.rse.2019.04.022

(24) Forkel, M., Dorigo, W., Carvalhais, N., Thonicke, K. (2019).
Fernerkundung für Globale Klima-Vegetationsmodelle.
Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation 28, 203–213.

(23) Forkel, M., Andela, N., Harrison, S.P., Lasslop, G., Marle, M. van, Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., Arneth, A. (2019).
Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models.
Biogeosciences 16, 57–76. https://doi.org/10.5194/bg-16-57-2019

(22) Huang, J., Forkelová, L., Unsicker, S.B., Forkel, M., Griffith, D.W.T., Trumbore, S., Hartmann, H. (2019).
Isotope labeling reveals contribution of newly fixed carbon to carbon storage and monoterpenes production under water deficit and carbon limitation.
Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2019.03.010

2018

(21) Buermann, W., Forkel, M., O’Sullivan, M., Sitch, S., Friedlingstein, P., Haverd, V., Jain, A.K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D., Nabel, J.E.M.S., Tian, H., Wiltshire, A.J., Zhu, D., Smith, W.K., Richardson, A.D. (2018).
Widespread seasonal compensation effects of spring warming on northern plant productivity.
Nature 562, 110–114. https://doi.org/10.1038/s41586-018-0555-7

(20) Schaphoff, S., Forkel, M., Müller, C., Knauer, J., von Bloh, W., Gerten, D., Jägermeyr, J., Lucht, W., Rammig, A., Thonicke, K. and Waha, K. (2018b).
LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model evaluation.
Geoscientific Model Development, 11(4), 1377–1403, doi:10.5194/gmd-11-1377-2018.

(19) Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S. and Waha, K. (2018a).
LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description.
Geoscientific Model Development, 11(4), 1343–1375, doi:10.5194/gmd-11-1343-2018.

(18) Teubner, I.E., Forkel, M., Jung, M., Liu, Y.Y., Miralles, D.G., Parinussa, R., van der Schalie, R., Vreugdenhil, M., Schwalm, C.R., Tramontana, G., Camps-Valls, G., Dorigo, W.A. (2018).
Assessing the relationship between microwave vegetation optical depth and gross primary production.
International Journal of Applied Earth Observation and Geoinformation 65, 79–91. doi:10.1016/j.jag.2017.10.006

2017

(17) Forkel, M., Dorigo, W., Lasslop, G., Teubner, I., Chuvieco, E., Thonicke, K. (2017).
A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1).
Geoscientific Model Development 10, 4443-4476. doi:10.5194/gmd-10-4443-2017
The publication received the Best Paper Award 2017 of the Faculty for Mathematics and Geoinformation of TU Wien.

(16) Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P.D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S.I., Smolander, T., Lecomte, P. (2017).
ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions.
Remote Sensing of Environment, 203, 185-215. doi:10.1016/j.rse.2017.07.001

(15) Sippel, S., Forkel, M., Rammig, A., Thonicke, K., Flach, M., Heimann, M., Otto, F. E. L., Reichstein, M. and Mahecha, M. D. (2017).
Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems.
Environmental Research Letters, 12, 7, 075006. doi:10.1088/1748-9326/aa7398.

(14) Knauer, J., Zaehle, S., Reichstein, M., Medlyn, B. E., Forkel, M., Hagemann, S., Werner, C. (2017).
The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications.
New Phytologist, 213, 1654-1666. doi:10.1111/nph.14288.

2016

(13) Thurner, M., Beer, C., Carvalhais, N., Forkel, M., Santoro, M., Tum, M., Schmullius, C. (2016).
Large‐scale variation in boreal and temperate forest carbon turnover rate is related to climate.
Geophysical Research Letters, doi:10.1002/2016GL068794.

(12) Sippel, S., Otto, F. E. L., Forkel, M., Allen, M. R., Guillod, B. P., Heimann, M., Reichstein, M., Seneviratne, S. I., Thonicke, K., Mahecha, M. D. (2016).
A novel bias correction methodology for climate impact simulations.
Earth System Dynamics, 7, 71-88. doi:10.5194/esd-7-71-2016.

(11) Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., Wingate, L., Tomelleri, E., Morra di Cella, U., Richardson, A.D. (2016).
Phenopix: A R package for image-based vegetation phenology.
Agricultural and Forest Meteorology 220, 141–150. doi:10.1016/j.agrformet.2016.01.006

(10) Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle, S., Reichstein, M. (2016).
Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems.
Science, doi:10.1126/science.aac4971.

2015

(9) Renner, M., Forkel, M., Brust, K., Schwärzel, K., Volk, M., Bernhofer, C. (2015).
Ein hydrometeorologisches Verfahren zur Unterscheidung der langjährigen Auswirkungen von Landnutzung und Klima auf den Wasserhaushalt.
Forum für Hydrologie und Wasserbewirtschaftung 35.15.

(8) Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., Carvalhais, N. (2015).
Codominant water control on global interannual variability and trends in land surface phenology and greenness.
Global Change Biology, 21(9), 3414-3435. doi:10.1111/gcb.12950.

(7) Semenova, O., Lebedeva, L., Volkova, N., Korenev, I., Forkel, M., Eberle, J., Urban, M. (2015).
Detecting immediate wildfire impact on runoff in a poorly-gauged mountainous permafrost basin.
Hydrological Sciences Journal, 60(7-8), 1225-1241. doi:10.1080/02626667.2014.959960.

2014

(6) Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T., Reichstein, M. (2014).
Global covariation of carbon turnover times with climate in terrestrial ecosystems.
Nature, 514, 213-217. doi:10.1038/nature13731.

(5) Forkel, M., Carvalhais, N., Schaphoff, S., Bloh, W. v., Migliavacca, M., Thurner, M., Thonicke, K. (2014).
Identifying environmental controls on vegetation greenness phenology through model-data integration.
Biogeosciences, 11(23), 7025-7050. doi:10.5194/bg-11-7025-2014.

(4) Urban, M., Forkel, M., Eberle, J., Hüttich, C., Schmullius, C., Herold, M. (2014).
Pan-arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981–2012).
Remote Sensing, 6(3), 2296-2316. doi:10.3390/rs6032296.

2012 - 2013

(3) Urban, M., Forkel, M., Schmullius, C., Hese, S., Hüttich, C., Herold, M. (2013).
Identification of land surface temperature and albedo trends in AVHRR Pathfinder data from 1982 to 2005 for northern Siberia.
International Journal of Remote Sensing, 34(12), 4491-4507. doi:10.1080/01431161.2013.779760.

(2) Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C. S., Reichstein, M. (2013).
Trend change detection in NDVI time series: Effects of inter-annual variability and methodology.
Remote Sensing, 5(5), 2113-2144. doi:10.3390/rs5052113.

(1) Forkel, M., Thonicke, K., Beer, C., Cramer, W., Bartalev, S., Schmullius, C. (2012).
Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia.
Environmental Research Letters, 7: 044021. doi:10.1088/1748-9326/7/4/044021.